№ 70 Айналмалы денелер. Шар және сфера. Жазықтық пен шардың өзара орналасуы. Шарға жанама жазықтық


1) Шар және оның бөліктері туралы қайталау:
- Сфера дегеніміз не?
- Шар дегеніміз не?
- Шар мен сфераның жазықтықпен қимасы (үлкен дөңгелек, үлкен шеңбер)
- Қиманың центрі шар центрінен қиюшы жазықтыққа түсірілген перпендикуляр болады.
- Шарға (сфераға) жанама жазықтық.
- Жанама жазықтықтың радиусқа болуы.
- Шар бөліктері. (олардың элементтері) (сегменті, қабаты, секторы)
- Шардың практикада қолданылуы.

2) Енді жаңа сабағымызға көшелік. Цилиндр, Конустың, қиық конустың жазбасы.

- Шар бетін жазықтыққа жазып тастау мүмкін емес. Сондықтан оның анықтамасын шек түсінігін пайдаланып беруге болады.
Теорема: Шар бетінің ауданы төрт еселенген үлкен дөңгелектің ауданына тең. Дәлелдеу. Үлкен дөңгелек ауданы S = πR2
Проблема:

3) Шар беті сфераны қалай аламыз? Плакаттан көрсету.

Жауап: Центрі О нүктесі болатын, диаметрі АҒ – ге тең жарты шеңбер берілсе, оны АҒ диаметрінен айналдырсақ шар бетін – сфераны аламыз.

4) Жарты шеңберге қабырғалар саны n-ге тең АВСДЕҒ дұрыс сынық сызықты іштей сызамыз. АҒ – диаметрінен айналдырсақ шыққан бет сфера бетіне шамалас болады. Сынық сызықтар санын арттырсақ, онда жуықтау дәлірек болып сфера бетіне жақындай түседі.

5) Шар бетінің ауданының анықтамасын береміз.

29-анықтама. Жарты шеңберді оның диаметрінен айналдырғанда шығатын шар бетінің ауданы ретінде жарты шеңберге іштей сызылған дұрыс сынық сызықты сол диаметрден сынық сызықтың буындар санын шексіз көбейте отырып айналдырғанда шығатын бет ауданының ұмтылатын шегі алынды.

6) Сынық сызықты айналдырғанда (конус, қиық конус, цилиндр беттерінен тұрады).

7) Іштей сызылған сынықтың апофемасын а деп белгілейік. Айналу денелерінің бүйір беттерінің аудандарының жалпы формуласы бойынша

Sб.б.= H 2 Па

8) АВ буыны айналғанда шығатын беттің ауданы АК * 2 Па

ВС буыны айналғанда шығатын беттің ауданы KN * 2 Па
СД буыны айналғанда шығатын беттің ауданы NP * 2 Па
ДЕ буыны айналғанда шығатын беттің ауданы PQ * 2 Па
ЕҒ буыны айналғанда шығатын беттің ауданы QF * 2 Па

9) Осыларды қосып АВСДЕҒ сынығының АҒ осінен айналғанда шығатын беттің ауданын аламыз. 2 Па (АК + KN + NP + PQ + QF) = 2 Па * АҒ

10) Буындар санын шексіз көбейтсек, сынық сызықтың бетінің ауданы, шар бетінің ауданына, ал апофемасы берілген жарты шеңбердің радиусына ұмтылады. Радиусы R десек. АҒ = 2 R.

Sшар беті = 2 ПR * 2R = 4 ПR2

11) АС доғасы АҒ осінен айналғанда шығатын шар сегменті бетінің ауданын есептеу формуласын қорытып шығару.

АВ + ВС + АК * 2 Па
KN * 2 Па
2 Па (АК + KN) = 2 Па * AN = 2 ПR * h
Sшарсег. = 2 ПRh

Сфералық белдіктің ауданын есептеу формуласын табайық. һ = һ2 – һ1 шар қабатының сфералық бетін биіктіктері һ1 жәнеһ2 болатын екі сегмент беттерінің айырмасы деп қарастыруға болады.

Sшарқаб. = 2 ПR (h2 – h1) = 2 ПRh
Sшарқаб. = 2 ПRh

Шардың көлемі мен бетінің ауданы туралы Архимедте өз тұжырымын жасаған: Ол «шардың көлемімен бетінің ауданы, оған сырттай сызылған цилиндрдің көлемі мен толық бетінің ауданының 2/3 бөлігіне тең» деп тұжырымдаған.

Сфера және шар олардың бөліктері сфералық геометрия деп аталған. Сфералық геометрия астрономияда кеңінен қолданылады, сонымен қатар теңіз кемелерінің, самолет және осмос кораблдерінің штурмандары жұлдыздарға қарап, өз координаталарын анықтайды. Жердің шар тәрізді екенін ескере отырып, шахта, метрополитень, тоннель құрылыстарында және жер шарының бетінің иодезиялық түсірілімдерінде (съемка) кеңінен қолданылады.